
## STUDIES IN MACROLIDE SYNTHESIS:

A SYNTHESIS OF TWO CHIRAL FRAGMENTS OF OLEANDOMYCIN AND LANKAMYCIN.

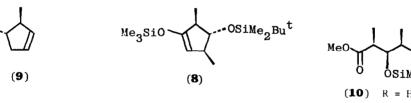
## Ian Paterson Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, England.

Summary: A synthesis of the two structurally-related chiral fragments,  $C_1-C_7$  and  $C_8-C_{13}$ , of oleandomycin and lankamycin is described.

The macrolide antibiotics,<sup>1,2</sup> as a large class of structurally-complex natural products, contain many interesting targets for total synthesis. The stereochemical similarities, both between different macrolides<sup>2</sup> and different segments of the same structure (i.e. the presence of molecular symmetry), provide useful guidance in designing potential synthetic routes. This 'symmetry consideration' is well-illustrated in the Stork approach<sup>3</sup> to the synthesis of erythronolide A, the aglycone of erythromycin.

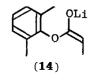


The aglycones of the medically-important oleandomycin (1)<sup>4</sup> and the related 14-membered macrolide lankamycin (2)<sup>5,6</sup> are configurationally identical at all 10 chiral centres between  $C_1$  and  $C_{13}$ . In addition, the chiral sequence between  $C_4$  and  $C_6$  is the same as that found at  $C_{10}$  to  $C_{12}$ . This can be clearly seen from their respective seco-acid structures (3) and (4). Based on bond disconnections at  $C_7$ - $C_8$  and  $C_{13}$ - $C_{14}$ , we describe here a synthesis of two fragments common to oleandomycin (1) and lankamycin (2) — a  $C_1$ - $C_7$  right-hand fragment (5) and a  $C_8$ - $C_{13}$  left-hand fragment (6) — both of which can be obtained from a single advanced intermediate (7).

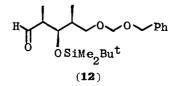

The silyl enol ether (+)-(**8**)<sup>3</sup> is readily available in 4 steps from **9** (63% overall yield), which is obtained in high enantiomeric purity (>95% ee) from cyclopentadiene using asymmetric hydroboration.<sup>7</sup> This chiral synthon (**8**) was intended as the source of the asymmetric carbons at  $C_2$ ,  $C_3$ , and  $C_4$  (right-hand fragment), as well as at  $C_9$  and  $C_{10}$  (left-hand fragment). Its conversion to the  $\delta$ -hydroxyester (**10**) was possible using a modified <sup>3</sup> sequence of ozonolysis (MeOH-CH<sub>2</sub>Cl<sub>2</sub>, 2:1, -78°C), addition of NaBH<sub>4</sub> (-78°C, 2h; 20°C, 2h), solvent evaporation and mild acid-ification (1M HCl, 0°C), then finally esterification (CH<sub>2</sub>N<sub>2</sub>, Et<sub>2</sub>O). Hydroxyl protection was immediately carried out on **10** (PhCH<sub>2</sub>OCH<sub>2</sub>Cl, Pr<sup>1</sup><sub>2</sub>Net, CH<sub>2</sub>Cl<sub>2</sub>, -78°C), followed by PCC oxidation of the derived alcohol (3 equiv., propylene oxide, CH<sub>2</sub>Cl<sub>2</sub>; 95%) then gave the aldehyde (**12**).

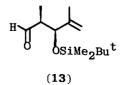
Introduction of the next 2 chiral centres was possible with high stereoselectivity using the aryl ester aldol condensation of Heathcock.<sup>8</sup> Addition of the aldehyde (**12**) to a solution of the Li enolate (**14**) at -100°C (THF, 10 min) gave two aldol diastereomers in ratio of 13:1<sup>8</sup> (92% combined yield), which were easily separated chromatographically (SiO<sub>2</sub>,  $Pr_2^i$ O-pentane, 1:3). The major aldol (**7**)<sup>9</sup>, R<sub>f</sub> 0.14, had  $J_{a,b}$  9.4 Hz supporting the expected<sup>8</sup> threo-stereochemistry, while the indicated stereo-relationship between the ester  $\beta$ - and  $\gamma$ -carbon atoms (b and c) was confirmed by correlation<sup>10</sup> with the known acetonide (**15**, R=SiPh\_2Bu<sup>t</sup>).<sup>3</sup> The aryl ester (-)-(**7**) now contains all of the chirality needed in the prospective left- and right-hand fragments (**5** and **6**).

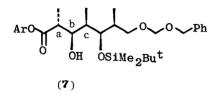
The synthesis of the (nucleophilic) right-hand fragment, the phenylsulphoxide derivatives  $(\mathbf{5}, \text{R=H or PhCH}_2\text{OCH}_2)$  were initially chosen, from **7** required only minor structural changes. Reduction with LiAlH<sub>4</sub> (Et<sub>2</sub>O, 0°C) followed by desilylation (TBAF, THF) gave the triol (**16**), which was first mono-tosylated (TsCl, Et<sub>3</sub>N-DMAP, CH<sub>2</sub>Cl<sub>2</sub>) then converted into the acetonide (**17**) ((MeO)<sub>2</sub>CMe<sub>2</sub>-CH<sub>2</sub>Cl<sub>2</sub>, pyridinium tosylate) in 70% yield from **7**. Tosylate (**17**) could be easily converted into **5**, R=PhCH<sub>2</sub>OCH<sub>2</sub>, by displacement with NaSPh (EtOH) followed by sulphur oxidation (NaIO<sub>4</sub>, aq. MeOH; 93% overall). Alternatively, the free alcohol (**5**, R=H) could be prepared by hydrogenolysis of the benzyloxymethyl ether (**17**) (H<sub>2</sub>, 10% Pd-C, Pr<sup>1</sup><sub>2</sub>O) to give **18**, followed by these same 2 steps (89% overall).

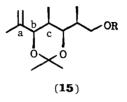

The synthesis of the left-hand fragment (6) common to both oleandomycin and lankamycin requires the loss of one redundant chiral centre from 7.<sup>11</sup> This sequence was initiated by protection of the secondary hydroxyl in 7 as its MEM ether (MEM- $\overline{NEt}_3$  Cl<sup>-</sup>,<sup>12</sup> MeCN, reflux, 32h), which on hydrogenolysis (H<sub>2</sub>, 10% Pd-C, Pr<sup>i</sup><sub>2</sub>O) gave ester (19) (96% overall). Treatment of (19) with o-NO<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)SeCN (Bu<sup>n</sup><sub>3</sub>P, THF, 0°C)<sup>13</sup> was followed by addition of 30% H<sub>2</sub>O<sub>2</sub> to give the alkene (20)<sup>11</sup>, which was finally reduced (DIBAL, CH<sub>2</sub>Cl<sub>2</sub>, -78°C) to give (-)-(6)<sup>14</sup> in 80% overall yield. The C<sub>8</sub> alkene is intended eventually, in each synthetic scheme, to become a suitable carbonyl derivative for coupling with the anion of 5.

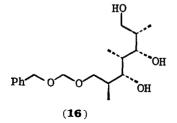
Finally, for our approach to the synthesis of oleandomycin (1), we have briefly examined the question of controlling the stereochemistry at  $C_{13}$ . Addition of MeMgCl to the aldehyde, obtained by oxidation of **6** (PCC, propylene oxide,  $CH_2Cl_2$ ), in THF at  $-100^{\circ}C$  gave an 8:1 ratio of  $C_{13}$ -epimers (93% combined yield). On the basis of chelation-controlled addition to this  $\beta$ -alkoxy-aldehyde, <sup>15</sup> we tentatively assign structure (**21**) to the major adduct (<sup>1</sup>H-NMR:H<sub>13</sub>, dq at  $\delta$  4.25; Me doublet at  $\delta$  1.23). If this is correct, a configuration inversion step (perhaps on cyclisa-

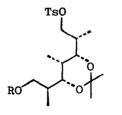




Ö ÖSiMe<sub>2</sub>But (10) R = H (11) R = PhCH<sub>2</sub>OCH<sub>2</sub>

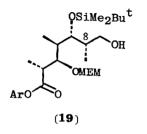

OR

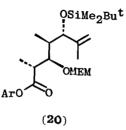


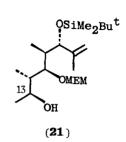


HO-








 $(17) R = PhCH_2OCH_2$ (18) R = H







tion<sup>16</sup>) would be needed to gain the natural  $C_{13}$  stereochemistry of oleandomycin (1).

Acknowledgements: I thank the S.E.R.C. and the University of London Central Research Fund for support.

Notes and References:

<sup>1</sup>Reviews: S. Masumune, G. S. Bates, and J. W. Corcoran, Angew. Chem. Internat. Ed., 16, 585 (1977); K. C. Nicolaou, Tetrahedron, 33, 683 (1977).

<sup>2</sup>W. D. Celmer, Pure Appl. Chem., 28, 413 (1971).

<sup>3</sup>G. Stork, I. Paterson, and F. K. C. Lee, J. Amer. Soc., 104, 4686 (1982).

<sup>4</sup>Structure determination: F. A. Hochstein, H. Els, W. D. Celmer, B. L. Shapiro, and R. B. Woodward, J. Amer. Chem. Soc., 82, 3225 (1960); W. D. Celmer, *ibid*, 87, 1797 (1965). Conformation: H. Ogura, K. Furahata, Y. Harada, and Y. Iitaka, *ibid*, 100, 6733 (1978).

<sup>5</sup>Structure determination: W. Keller-Schierlein and G. Roncari, Helv. Chim. Acta, 47, 78 (1964); R. Muntwyler and W. Keller-Schierlein, *ibid*, 55, 460 (1972); R. S. Egan and J. R. Martin, J. Amer. Chem. Soc., 92, 4129 (1970). J. R. Martin, R. S. Egan, A. W. Goldstein, S. L. Mueller, W. Keller-Schierlein, L. A. Mitscher, and R. L. Foltz, Helv. Chim. Acta, 59, 1886 (1976).

<sup>6</sup>Lankamycin has been independently isolated and named kujimycin B. S.Omura, T. Muro, S. Namiki, M. Shibata, and J. Sawada, J. Antibiot., 22, 629 (1969).

<sup>7</sup>J. J. Partridge, N. K. Chadha, and M. R. Uskovic, J. Amer. Chem. Soc., 95, 532 (1973).

<sup>8</sup>M. C. Pirrung and C. H. Heathcock, J. Org. Chem., 45, 1727 (1980). Condensation of **14** with 2-phenylpropanal at -78°C was reported to give a 4:1 "Cram/anti-Cram" ratio of the two threo-adducts.

- <sup>9</sup>Major aldol diastereomer (**7**),  $[\alpha]_D = -6.2^{\circ}$  (c 2.58, CHCl<sub>3</sub>), had <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  7.24 - 7.38 (5H, m, Ph), 7.04 (3H, m, Ar), 4.70 - 4.80 (2H, m, OCH<sub>2</sub>O), 4.61 (2H, s, CH<sub>2</sub>Ph), 4.02 (1H, dd, J 9.4, 2.3, H<sub>b</sub>), 3.88 (1H, dd, J 6.4, 2.3, CHOSi), 3.57 (1H, dd, J 9.5, 6.7, CHHO), 3.45 (1H, dd, J 7.0, 9.5, CHHO), 2.92 (1H, dq, J 9.4, 7.0, H<sub>a</sub>), 2.16 (6H, s, Me), 2.02 - 2.16 (1H, m), 1.78 - 1.89 (1H, m), 1.33 (3H, d, J 7.0, MeCH<sub>a</sub>), 0.97 (3H, d, J 7.0, Me), 0.94 (3H, d, Me), 0.92 (9H, s, Bu<sup>t</sup>), 0.11 and 0.09 (3H, s, MeSi); <sup>13</sup>C-NMR (CDCl<sub>3</sub>)  $\delta$  174.01, 148.08, 137.95, 130.27, 128.68, 128.48, 127.91, 127.74, 125.94, 94.84, 75.10, 73.99, 71.29, 69.55, 44.34, 37.88, 37.17, 26.25, 18.53, 16.53, 14.47, 11.79, 8.97.
- <sup>10</sup>The major aldol adduct (7) was converted into acetonide (15, R = PhCH<sub>2</sub>OCH<sub>2</sub>) by the sequence: (i) LiAlH<sub>4</sub>, Et<sub>2</sub>O; (ii) TBAF, THF; (iii) ButPh<sub>2</sub>SiCl, Et<sub>3</sub>N (DMAP), CH<sub>2</sub>Cl<sub>2</sub>; (iv) (MeO)<sub>2</sub>CMe<sub>2</sub>, TSOH.py; repeat (ii); (v) o-NO<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)SeCN, Bu<sub>3</sub>P, THF, followed by 30% H<sub>2</sub>O<sub>2</sub>. **15** (R = ButPh<sub>2</sub>Si) and its epimer at C<sub>b</sub>, as well as their respective methyl ketone derivatives,<sup>3</sup> have markedly different <sup>1</sup>H-NMR spectra. In particular, the axial H<sub>b</sub> in **15** occurs at  $\delta$  4.22, while its epimer has H<sub>b</sub> at higher field in the region of  $\delta$  3.3 - 3.8.
- <sup>11</sup>The ester (20) could be prepared in fewer steps, but with lower overall yield, by aldol addition of 14<sup>8</sup> to the olefinic aldehyde (13) (prepared from 10), followed by formation of the MEM ether. The aldol diastereoselectivity now obtained was reduced to 8:1 at -100°C.

<sup>12</sup>E. J. Corey, J.-L. Gras, and P. Ulrich, Tetrahedron Letters, 809 (1976).

<sup>13</sup>P. A. Grieco, S. Gilman, and M. Nishizawa, J. Org. Chem., 41, 1485 (1976).

 $^{14}\textbf{6}, \ [\alpha]_D = -15.5^{\circ} \ (c \ 1.16, \ CHCl_3), \ had \ ^{1}H-NMR \ (CDCl_3, \ 200 \ MHz): \ \delta \ 4.92 \ (2H, \ bs, \ C=CH_2), \ 4.70 \ -4.82 \ (2H, \ m, \ OCH_20), \ 3.92 \ (1H, \ d, \ J \ 9.0, \ CHOSi), \ 3.30 \ -3.84 \ (6H, \ m), \ 3.36 \ (3H, \ s, \ OMe), \ 2.62 \ (1H, \ bs, \ OH), \ 1.64 \ -1.88 \ (2H, \ m, \ CHMe), \ 1.62 \ (3H, \ s, \ MeC=C), \ 0.97 \ (3H, \ d, \ J \ 7.0, \ Me), \ 0.94 \ (3H, \ d, \ J \ 7.0, \ Me), \ 0.05 \ and \ 0.00 \ (3H, \ s, \ MeSi); \ \ ^{13}C-NMR \ (CDCl_3) \ \delta \ 114.90, \ 97.80, \ 83.26, \ 79.42, \ 71.66, \ 67.89, \ 65.17, \ 59.05, \ 39.61, \ 38.28, \ 25.85, \ 18.25, \ 16.61, \ 15.04, \ 10.32, \ 0.2.$ 

<sup>15</sup>W. C. Still and J. A. Schneider, *Tetrahedron Letters*, 1035 (1980).

<sup>16</sup>W. H. Kruizinga and R. M. Kellogg, J. Amer. Chem. Soc, 103, 5183 (1981).

(Received in UK 10 January 1983)